Death Receptor Signaling Giving Life to Ectodermal Organs

Author:

Thesleff Irma1,Mikkola Marja L.1

Affiliation:

1. Developmental Biology Program, Insitute of Biotechnology, Viikki Biocenter, Post Office Box 56, University of Helsinki, 00014 Helsinki, Finland.

Abstract

A new tumor necrosis factor (TNF) pathway has been identified that has an important function in the regulation of embryonic development. Three key components of this pathway are previously unknown proteins: the TNF ligand ectodysplasin (also known as EDA), its death domain-containing receptor EDAR, and the death domain adapter molecule EDARADD. This pathway was discovered and delineated through the cloning of genes that cause human hypohidrotic ectodermal dysplasia (HED) syndromes and by analysis of the corresponding mouse mutants ( Tabby , downless , and crinkled ) showing defects in hair, teeth, and several exocrine glands. EDAR signaling is mediated by the activation of nuclear factor kappa B, but other downstream targets are not known. Ectodysplasin-EDAR signaling mediates cell interactions within the ectoderm and regulates the initiation and morphogenesis of hair and teeth. It is also necessary for the development of fish scales, indicating that this pathway and its function have been conserved during the evolution of ectodermal organs.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3