Optimization of endocrine pancreas fluorescence analysis using machine methods

Author:

Ivanenko T. V.ORCID,Abramov A. V.ORCID

Abstract

The study aims to establish the appropriate parameters of UV excitation intensity and permanent excitation time on the pancreatic islets photobleaching, the ratio of the intensity of the useful signal in the region of interest to the intensity of nonspecific background fluorescence. Materials and methods. The pancreas of three adult Wistar rats was fixed in Bouin solution (20 hours) and poured into paraplast after standard histological processing. The study was carried out on paraffin sections of the pancreas. The islets’ insulin and glucagon were determined by immunofluorescence method using monoclonal antibodies (Santa Cruz Biotechnology). The immunofluorescence reaction was studied using an AxioImager-M2 fluorescent microscope. AxioVision digital image analysis system was used for fluorescence imaging, and ImageJ 64-bit image analysis system was used for image quantification. 30 pancreatic islets with an area from 3000 µm2 to 5000 µm2 (8–13 % of the frame area) were analyzed. Results. Measurements carried out at constant values of hormone concentration in endocrinocytes showed a different estimate of the average fluorescence intensity for insulin and glucagon, which depended on the intensity of UV radiation. As the intensity of UV radiation increased, the average fluorescence intensity in the region of interest for insulin and glucagon increased, but when the camera exposure was corrected, it became almost the same. Regardless of this, the intensity of nonspecific background fluorescence increased monotonically. The use of the ratio of the logarithms of the background fluorescence of the drug and the fluorescence of endocrinocytes in the calculations gives a stable estimate of the relative concentration of hormones, which does not depend on the intensity of the selected UV radiation regime, as well as on the duration of UV irradiation of the drug. This makes it possible to neutralize the effect of photodynamic discoloration of the preparation caused by continuous irradiation. Methods for machine selection of the region of interest by various algorithms of the ImageJ program lead to different estimates of its area, integral, and average fluorescence values. At the same time, the result closest to the “ideal” interactive method of highlighting the area of interest for insulin and glucagon was shown by Otsu’s algorithm. Conclusions. In immunofluorescent examination of the pancreas, a moderate UV radiation mode should be selected, exposure correction of the CCD camera before taking each frame, and the total time for examining the visual field of the sample should be limited to 1–2 minutes. To highlight the area of interest for insulin and glucagon in automatic analysis, it is recommended to use the Otsu algorithm. To obtain a quantitative estimate of the average fluorescence intensity in the region of interest, it is recommended to use the ratio of the logarithms of the background fluorescence of the drug and endocrinocytes in the calculations.

Publisher

Zaporozhye State Medical University

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3