Pathobiochemical aspects of alcoholic cardiomyopathy. The role of hydrogen sulfide in the mechanism of cardiocytoprotection (a review)

Author:

Voloshchuk N. I.ORCID,Rudenko K. V.ORCID,Matiash O. R.ORCID,Denysiuk O. M.ORCID

Abstract

Aim: systematization of knowledge about the pathobiochemical mechanisms of heart disease in alcoholic cardiomyopathy (ACMP) and the search for promising ways of cardiocytoprotection. Alcohol abuse is an important medical and social problem, risk factor for metabolic disorders, malnutrition, cancers, dementia, neuropathy, and others. Consumption of large amounts of ethanol increases a risk of sudden cardiac death and cardiac arrhythmias. The term “alcoholic cardiomyopathy” describes a heart disease in people with a history of long-term alcohol use. ACMP is characterized by left ventricular dilatation, decreased wall thickness and (at the later stages) decreased left ventricular ejection fraction (less than 40 %). Analysis of literature data about the mechanisms of alcohol-induced cardiotoxicity revealed trigger factors for myocardial damage. Negative effect of ethanol on the heart is realized through induction of oxidative-nitrosative stress, apoptosis, inflammation, fibrogenesis, hypoenergetic state and ion pump dysfunction, development of endothelial dysfunction, impaired ribosomal synthesis. In-depth study of biochemical mechanisms and identification of new molecular targets, integrated into the pathogenesis of ACMP, will optimize the pharmacotherapy for this pathology. Hydrogen sulfide (H2S), is a metabolic factor involved in the regulation of cardiovascular activity. Use of exogenous H2S has potent cardioprotective properties in cardio-vascular diseases. Donors of H2S and H2S-releasing drugs (hybrid molecules – H2S-aspirin, H2S-NO) show a powerful cardioprotective role in various pathological conditions. Therefore, it is advisable to further study the role of H2S system in the pathogenesis of ACMP to develop new approaches to more effective treatment of this disease. Conclusions. Modulation of the H2S level in the organism may be a predictor of the severity of myocardial damage, as well as a promising vector in pharmacotherapy, including alcoholic cardiomyopathy.

Publisher

Zaporozhye State Medical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3