Improved sensitivity, safety and laboratory turnaround time in the diagnosis of pulmonary tuberculosis by use of bleach sedimentation

Author:

James Ameh,Ochei Kingsley,Emenyonu Nnamdi,Lawson Lovett

Abstract

Background: Inadequate diagnostic processes and human resources in laboratories contribute to a high burden of tuberculosis (TB) in low- and middle-income countries. Direct smear microscopy is relied on for TB diagnosis; however, sensitivity rates vary. To improve sensitivity of direct microscopy, the researchers employed several approaches, including sputum digestion and concentration of acid-fast bacilli (AFB), a technique which uses commercial bleach.Objectives: This study compared methods used to diagnose active Mycobacterium tuberculosis infections.Methods: Three sputum specimens were collected from each of 340 participants in Abuja, Nigeria, over two consecutive days. Direct microscopy was performed on all specimens; following microscopy, one specimen from each patient was selected randomly for bleach sedimentation and one for Lowenstein-Jensen culture.Results: Direct microscopy produced 28.8% AFB-positive results, whilst bleach sedimentation resulted in 30.3%. When compared with the cultures, 26.5% were AFB true positive using direct microscopy and 27.1% using bleach sedimentation. Whilst the specificity rate between these two methods was not statistically significant (P = 0.548), the sensitivity rate was significant (P = 0.004).Conclusion: Based on these results, bleach increases the sensitivity of microscopy compared with direct smear and has similar specificity. When diagnosing new cases of pulmonary TB, one bleach-digested smear is as sensitive as three direct smears, reducing waiting times for patients and ensuring the safety of laboratory technicians.

Publisher

AOSIS

Subject

Clinical Biochemistry,Medical Laboratory Technology,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3