Optimum systems integration architecture for monitoring to manage an electricity utility

Author:

Pokane Sello S.ORCID,Shilenge Musa C.ORCID,Telukdarie ArneshORCID

Abstract

Background: A Supervisory Control and Data Acquisition (SCADA) system is critical for remote monitoring and control of devices in various industries such as power utilities, oil and gas refineries, and manufacturing. Previous generations of SCADA systems have numerous limitations in today’s business environment. The latest technological advancements have brought forth new SCADA architecture variants that can be configured to ensure optimised operations. There is a need to assess the latest SCADA architectures that are posed to replace previous generations.Objectives: This research study aims to review various SCADA architectures and proposes an optimum SCADA system architecture for power utility. The proposed architecture is compared with the existing power utility SCADA system to highlight the impact and benefits of the proposed architecture.Methods: The research uses a qualitative approach and a comparative case study method to compare 10 SCADA architectures against a literature review-based criterion. A Multi-Criteria Decision-Making (MCDM) matrix is used to evaluate SCADA architectures and proposes an optimum Internet-of-Things (IoT)-SCADA system architecture for the power utility case study.Results: The research proposed an IoT-SCADA system architecture for optimum system functioning and compared the proposed architecture with the existing utility SCADA architecture. Moreover, the impact and benefits of the proposed architecture to the utility company are presented.Conclusion: The proposed IoT-SCADA system architecture has the potential to resolve many of the challenges encountered with previous generations of SCADA system architectures.

Publisher

AOSIS

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Architecture Approach to Manage Electricity Utility in a Smart City;2023 IEEE European Technology and Engineering Management Summit (E-TEMS);2023-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3