Consequences of rpoB mutations missed by the GenoType MTBDRplus assay in a programmatic setting in South Africa

Author:

Mvelase Nomonde R.ORCID,Cele Lindiwe P.ORCID,Singh RaveshORCID,Naidoo YeshneeORCID,Giandhari JenniferORCID,Wilkinson EduanORCID,De Oliveira TulioORCID,Swe Swe-Han KhineORCID,Mlisana Koleka P.ORCID

Abstract

Background: Rifampicin resistance missed by commercial rapid molecular assays but detected by phenotypic assays may lead to discordant susceptibility results and affect patient management.Objective: This study was conducted to evaluate the causes of rifampicin resistance missed by the GenoType MTBDRplus and its impact on the programmatic management of tuberculosis in KwaZulu-Natal, South Africa.Methods: We analysed routine tuberculosis programme data from January 2014 to December 2014 on isolates showing rifampicin susceptibility on the GenoType MTBDRplus assay but resistance on the phenotypic agar proportion method. Whole-genome sequencing was performed on a subset of these isolates.Results: Out of 505 patients with isoniazid mono-resistant tuberculosis on the MTBDRplus, 145 (28.7%) isolates showed both isoniazid and rifampicin resistance on the phenotypic assay. The mean time from MTBDRplus results to initiation of drug-resistant tuberculosis therapy was 93.7 days. 65.7% of the patients had received previous tuberculosis treatment. The most common mutations detected in the 36 sequenced isolates were I491F (16; 44.4%) and L452P (12; 33.3%). Among the 36 isolates, resistance to other anti-tuberculosis drugs was 69.4% for pyrazinamide, 83.3% for ethambutol, 69.4% for streptomycin, and 50% for ethionamide.Conclusion: Missed rifampicin resistance was mostly due to the I491F mutation located outside the MTBDRplus detection area and the L452P mutation, which was not included in the initial version 2 of the MTBDRplus. This led to substantial delays in the initiation of appropriate therapy. The previous tuberculosis treatment history and the high level of resistance to other anti-tuberculosis drugs suggest an accumulation of resistance. 

Publisher

AOSIS

Subject

Clinical Biochemistry,Medical Laboratory Technology,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3