The impact of acid mine drainage on the ecology of the Cradle of Humankind and Krugersdorp Game Reserve on the West Rand

Author:

Durand François

Abstract

The Witwatersrand Supergroup is the world’s richest goldbearing geological deposit. This approximately 2.8 milliard years old unit is overlain by the 2.71–2.67 milliard years Ventersdorp Supergroup which is in turn overlain by the 2.67–2.46 milliard years Chuniespoort Group of the Transvaal Supergroup. The dolomite-rich Chuniespoort Group also contains a large aquifer which supplies water to farms in southern Gauteng, southeastern North West Province and northern Free State. The megalitres of water in the dolomite flooding the adjacent gold mines in the Witwatersrand Supergroup need to be pumped out constantly to keep the mines operational. The gold mines in the Witwatersrand Supergroup are amongst the deepest mines in the world and those in Gauteng are up to 3 km deep. The mines of the Central Rand, the East Rand and the West Rand, which extend over an area of 100 km, were shut down, one after the other, as the gold ore was depleted to a depth of approximately 3 km and it became uneconomical to continue. The enormous mine void, occupying several million cubic metres, gradually started to fill up with groundwater again, causing the springs in the vicinity of the Witwatersrand mines to flow after more than a century of dewatering. The water flowing from these springs, however, is not clean dolomitic water but acid mine water containing a high concentration of sulphuric acid, sulphate salts and metals, including radioactive heavy metals. The auriferous geological layers constituting the Witwatersrand Supergroup also contain large quantities of iron pyrite (FeS2) which forms sulphuric acid when it comes into contact with water and oxygen. The deterioration of the ecology in the Krugersdorp Game Reserve and the Cradle of Humankind World Heritage Site is a good example of the negative impact acid mine water has on the ecology.

Publisher

Medpharm Publications

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3