Tuberculosis-loop-mediated isothermal amplification implementation in Cameroon: Challenges, lessons learned and recommendations

Author:

Donkeng-Donfack Valerie F.ORCID,Ongoulal Suzanne M.ORCID,Djieugoue Yvonne J.ORCID,Simo Yannick K.ORCID,Manga HenriORCID,Tollo Danielle A.D.ORCID,Belinga Edwige M.A.ORCID,Mbassa VincentORCID,Abena Jean L.ORCID,Eyangoh SaraORCID

Abstract

Background: Until 2016, microscopy was the main tool for the early detection of pulmonary tuberculosis in Cameroon, especially in remote settings. Due to the poor sensitivity of microscopy, there was a need to implement a molecular assay in order to improve tuberculosis case detection.Intervention: In 2017, tuberculosis loop-mediated isothermal amplification (TB-LAMP), a molecular rapid diagnostic test recommended by the World Health Organization, was implemented in Cameroon as a replacement test of microscopy for initial diagnosis of pulmonary tuberculosis and also as a follow-on test to microscopy for smear-negative sputum specimens. A roll out plan for TB-LAMP implementation in Cameroon had been developed from January 2017 to April 2017, followed by initial implementation at four sites in May 2017. Additional sites were added progressively.Lessons learnt: The use of TB-LAMP as a follow-on test to microscopy for smear-negative sputum specimens helped in the detection of tuberculosis in 14.77% of those who were sputum-smear negative in 2019. Tuberculosis-loop-mediated isothermal amplification usage as an initial test, followed by testing with Xpert MTB/RIF for rapid tuberculosis and rifampicin resistance detection during tuberculosis mass screening campaigns, reduced the turn-around time by 73.23% as compared to when the Gene Xpert instrument was used alone.Recommendations: The implementation and scaling up of TB-LAMP in Cameroon contributed to increase access to tuberculosis molecular diagnosis in remote settings and as such improved tuberculosis case notification. However, to better enhance this notification and optimise the use of a TB-LAMP instrument, a suitable sample transport system is recommended.

Publisher

AOSIS

Subject

Clinical Biochemistry,Medical Laboratory Technology,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3