Optimisation of key performance measures in air cargo demand management

Author:

May Alexander,Anslow Adrian,Ojiako Udechukwu,Wu Yue,Marshall Alasdair,Chipulu Maxwell

Abstract

This article sought to facilitate the optimisation of key performance measures utilised for demand management in air cargo operations. The focus was on the Revenue Management team at Virgin Atlantic Cargo and a fuzzy group decision-making method was used. Utilising intelligent fuzzy multi-criteria methods, the authors generated a ranking order of ten key outcome-based performance indicators for Virgin Atlantic air cargo Revenue Management. The result of this industry-driven study showed that for Air Cargo Revenue Management, ‘Network Optimisation’ represents a critical outcome-based performance indicator. This collaborative study contributes to existing logistics management literature, especially in the area of Revenue Management, and it seeks to enhance Revenue Management practice. It also provides a platform for Air Cargo operators seeking to improve reliability values for their key performance indicators as a means of enhancing operational monitoring power.

Publisher

AOSIS

Subject

Information Systems and Management,Industrial and Manufacturing Engineering,Management Science and Operations Research,Transportation,Management Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parties Involved;Air Cargo;2023

2. Intelligent and Fuzzy Approaches in Aviation 4.0 Transportation and Cargo Applications;Intelligent and Fuzzy Techniques in Aviation 4.0;2021-08-27

3. Beteiligte Parteien;Luftfracht;2019-11-24

4. Revenue management of air cargo service in theory and practice;IOP Conference Series: Earth and Environmental Science;2018-05

5. Spatial relationships and movement patterns of the air cargo industry in airport regions;Journal of Transport and Supply Chain Management;2017-05-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3