A geomorphic and soil description of the long-term fire experiment in the Kruger National Park, South Africa

Author:

Venter Frederik J.,Govender Navashni

Abstract

In 1954, the experimental burning programme into fire research was initiated in the Kruger National Park (KNP), South Africa. It is viewed as one of the last remaining long- term landscape fire experiments in Africa. Throughout the more than five decades of fire treatments in the experiment, numerous surveys (expanding various spatial and temporal scales), research projects (covering biotic and abiotic components) and analyses have been conducted with the aim to assess the impacts of different fire regimes on the savannah biome. The design of the experiment intended to test the effect of season and frequency of burning on vegetation within four major landscapes in the KNP. However, these effects have been partly obscured by factors not fully taken into account by the experimental design, namely, herbivory, artificial water provision and soil variation. Soil variation between replicates in the same landscape, as well as within individual replicates, has raised the issue of the representivity of the trial. This paper provided a description and ranking of the experimental burning trial according to the geomorphic and soil characteristics of each plot in comparison to the surrounding landscape.Conservation implications: The KNP burn plots are one of the largest and longest-running fire experiments on fire ecology in African savannahs. However, studies need to consider the underlying geomorphic and soil template when designing experiments and interpreting results. This work describes the representivity of the plots across, and within, treatments.

Publisher

AOSIS

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3