Study of photobiomodulation effects with violet-blue and red light in experimental oncogenesis

Author:

Zhukova Evgeniya S.1ORCID,Shcherbatyuk Tatiana G.2ORCID,Potapov Arseniy L.3ORCID,Chernigina Irina A.3ORCID,Chernov Vladimir V.4ORCID,Gapeyev Andrew B.5ORCID

Affiliation:

1. Nizhny Novgorod Research Institute for Hygiene and Occupational Pathology

2. Nizhny Novgorod Research Institute for Hygiene and Occupational Pathology; Pushchino State Institute of Natural Science; Moscow Region State University

3. Privolzhsky Research Medical University

4. Institute of Applied Physics of the Russian Academy of Sciences

5. Moscow Region State University; Institute of Cell Biophysics of the Russian Academy of Sciences

Abstract

Introduction. There is still an open question about the limits of medical use of low-intensity electromagnetic radiation of the optical range in tumor growth due to the risk of increased proliferation of tumor cells. The conditions under which the tumor process is stimulated, as well as the mechanisms of photobiomodulation in oncological pathology, remain unclear. The aim of the study - in vitro evaluation and comparison of the effect of low-intensity electromagnetic radiation with wavelengths of 400, 460 and 660 nm on the activity of free-radical processes in tumor tissue and blood in normal and growing experimental neoplasia. Materials and methods. The study was conducted on biological material obtained from white non-linear rats intact and with subcutaneously transplanted cholangiocellular cancer MS-1. The sources of low-intensity radiation with wavelengths of 400, 460 and 660 nm were led generators. The content of hemoglobin, the activity of superoxide dismutase and catalase, changes in the overall level of free radical processes and antioxidant activity by induced chemiluminescence, and DNA damage by the method of DNA comets were studied. Data analysis was performed using nonparametric statistics methods. Results. The multidirectional effect of radiation with wavelengths of 400, 460 and 660 nm on free-radical homeostasis indicators at the early and late stages of tumor growth, as well as the dependence of biological effects on the wavelength of radiation, was found. Conclusions. The results obtained allow making a number of assumptions about the mechanisms of action of the optical electromagnetic waves on tumor growth, modulating free radical processes in the tumor-bearing organism.

Publisher

FSBI Research Institute of Occupational Health RAMS

Subject

General Medicine

Reference21 articles.

1. Dagenais G.R., Leong D.P., Rangarajan S. et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. The Lancet. 2019; 395(10225): 785–94. https://doi.org/10.1016/S0140-6736(19)32007-0

2. Gudkova O.Yu., Gapeyev A.B., Chemeris N.K. et al. Study of the mechanisms of formation of reactive oxygen species in aqueous solutions exposed to high-peak-power pulsed electromagnetic radiation of extremely high frequencies. Biophysics. 2005; 50(5): 679–84.

3. Gapeyev A.B., Lukyanova N.A., Gudkov S.V. Hydrogen peroxide induced by modulated electromagnetic radiation protects the cells from DNA damage. Cent. Eur. J. Biol. 2014; 9(10): 915–921. https://doi.org/10.2478/s11535-014-0326-x

4. Hamblin M.R., Nelson S.T., Strahan J.R. Photobiomodulation and Cancer: What Is the Truth? Photomed. Laser. Surg. 2018; 36(5): 241–5. https://doi.org/10.1089/pho.2017.4401

5. Minaev V.P., Zhilin K.M. Sovremennye lazernye apparaty dlja hirurgii i silovoj terapii na osnove poluprovodnikovyh i volokonnyh lazerov: rekomendacii po vyboru i primeneniju. M.: Izdatel' I.V.Balabanov; 2009 (in Russian)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3