Influence of different surface finishing protocols on the wear behavior of a lithium disilicate glass-ceramic

Author:

Weber Katia R.,Satpathy Megha,Marocho Susana Salazar,Griggs Jason A.,Borba Márcia

Abstract

Purpose. This study aims to evaluate the effect of different finishing protocols on the wear behavior of a lithium disilicate glass-ceramic. Material and methods. Specimens were produced from lithium disilicate glass-ceramic prefabricated CAD/CAM blocks and divided into three groups, according to the surface treatment (n = 8): control; polishing; glaze. Ceramic specimens were subjected to wear test using a dual-axis chewing simulator. A 49 N load was applied in the axial direction combined with a lateral movement (1 mm path) using a lithium disilicate glass-ceramic spherical piston for a total of 106 cycles. Qualitative analysis of the wear surface was performed using an optical microscope. Quantitative analysis of surface roughness and volume loss was performed using a confocal microscope and a 3D-image editing software, respectively. Surface roughness and volume loss data were analyzed using Friedman's non-parametric statistical test for repeated measures and the Student-Newman-Keuls test (α = 0.050). Results. There were statistical differences for surface roughness and volume loss of lithium disilicate glass-ceramic specimens in the different experimental conditions (P˂0.001). Control and polishing groups showed similar surface roughness and volume loss values for all testing times. Glaze group had greater wear volume after 103, 104 and 105 cycles. After 106 cycles, surface roughness and volume loss were similar among groups. For the piston, surface roughness was similar over time and among groups. Conclusions. A distinct wear behavior was found for glazed glass-ceramic specimens in comparison to control and polished specimens. The end of the simulation, the surface roughness and volume loss was similar for the groups.

Publisher

Quintessence Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3