Publisher
The Japanese Geotechnical Society
Reference28 articles.
1. 1) Abbas, A., Vantassel, J. P., Cox, B. R., Kumar, K., & Crocker, J. (2022). A Frequency-Velocity CNN for Developing Near-Surface 2D Vs Images from Linear-Array, Active-Source Wavefield Measurements (arXiv:2207.09580).
2. 2) Adler, A., Araya-Polo, M., & Poggio, T. (2021). Deep Learning for Seismic Inverse Problems: Toward the Acceleration of Geophysical Analysis Workflows. IEEE Signal Processing Magazine, 38(2), 89–119.
3. 3) Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2018). Automatic differentiation in machine learning: A survey (arXiv:1502.05767).
4. 4) Ben-Hadj-Ali, H., Operto, S., & Virieux, J. (2008). Velocity model building by 3D frequency-domain, full-waveform inversion of wide-aperture seismic data. GEOPHYSICS, 73(5), VE101–VE117.
5. 5) Bernard, S., Monteiller, V., Komatitsch, D., & Lasaygues, P. (2017). Ultrasonic computed tomography based on full-waveform inversion for bone quantitative imaging. Physics in Medicine & Biology, 62(17), 7011.