Abstract
Organic solar cells present a promising alternative for the generation of solar energy at lower material and production costs compared to widely used silicon-based solar cells. The major drawback of organic solar cells currently is a lower rate of energy conversion. Thus many research projects aim to improve the achievable efficiency. In this work a phase field model is used to mathematically describe the morphology evolution of the active layer composed of polymer as electron-donor and fullerene as electron-acceptor. The derivation of a chemical potential term and a surface energy term for the polymer-fullerene solution using the Flory-Huggins theory forms the basis to employ the Cahn-Hilliard equation. After including several specifics of the application in this non-linear partial differential equation of fourth order, an implementation of the model using the FEM solver software FEniCS provides some simulation results that qualitatively match results from the literature.
Publisher
Technische Universitat Chemnitz
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献