PCR Prevalence of Murine Opportunistic Microbes and their Mitigation by Using Vaporized Hydrogen Peroxide

Author:

Ragland Natalie H1,Miedel Emily L2,Engelman Robert W2

Affiliation:

1. Department of Comparative Medicine, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida, USA. nragland@usf.edu

2. Department of Comparative Medicine, H Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa, Florida, USA

Abstract

Exposing immunodeficient mice to opportunistic microbes introduces risks of data variability, morbidity, mortality, and the invalidation of studies involving unique human reagents, including the loss of primary human hematopoietic cells, patient-derived xenografts, and experimental therapeutics. The prevalence of 15 opportunistic microbes in a murine research facility was determined by yearlong PCR-based murine and IVC equipment surveillance comprising 1738 specimens. Of the 8 microbes detected, 3 organisms— Staphylococcus xylosus, Proteus mirabilis, and Pasteurella pneumotropica biotype Heyl—were most prevalent in both murine and IVC exhaust plenum specimens. Overall, the 8 detectable microbes were more readily PCR-detectable in IVC exhaust airways than in murine specimens, supporting the utility of PCR testing of IVC exhaust airways as a component of immunodeficient murine health surveillance. Vaporized hydrogen peroxide (VHP) exposure of IVC equipment left unassembled (that is, in a 'static-open' configuration) did not eliminate PCR detectable evidence of microbes. In contrast, VHP exposure of IVC equipment assembled 'active-closed' eliminated PCR-detectable evidence of all microbes. Ensuring data integrity and maintaining a topographically complex immunodeficient murine research environment is facilitated by knowing the prevalent opportunistic microbes to be monitored and by implementing a PCR-validated method of facility decontamination that mitigates opportunistic microbes and the risk of invalidation of studies involving immunodeficient mice.

Publisher

American Association for Laboratory Animal Science

Subject

Animal Science and Zoology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3