Effects of Acrylic Tunnel Enrichment on Anxiety-Like Behavior, Neurogenesis, and Physiology of C57BL/6J Mice

Author:

Oatess Tai L1,Harrison Fiona E2,Himmel Lauren E1,Jones Carissa P3

Affiliation:

1. Department of Pathology, Microbiology, and Immunology, Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, Tennessee

2. Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee

3. Department of Pathology, Microbiology, and Immunology, Division of Comparative Medicine, Vanderbilt University Medical Center, Nashville, Tennessee;, Email: carissa.jones@vumc.org

Abstract

Environmental enrichment for mice lags behind the standard enrichment offered to other laboratory rodents due to concerns about environmental variability and, in specific contexts, aggression. Our objective in this study was to evaluate concerns that the introduction of structural enrichment in the form of a single red acrylic mouse tunnel into murine housing may confound study findings. We measured effects on anxiety-like behaviors (elevated zero maze and open field activity), hippocampal neurogenesis, body weight gain, and physiologic markers of stress (adrenal gland weight, plasma corticosterone concentration, and neutrophil:lymphocyte ratio). Male and female C57BL/6J mice were randomly assigned to one of 2 groups: a standard-housed control group with enrichment consisting of paper nesting material, or an enriched group that received a single acrylic tunnel in addition to nesting material. All results fell within biologically normal ranges regardless of treatment, and variability (standard deviation) was not significantly different between groups for any measure. Mice in the enriched group showed modest differences during open field testing suggestive of decreased anxiety, traveling farther and depositing fewer fecal boli than standard-housed mice. Male mice in the tunnel-enriched group gained more body weight than standard-housed male mice. No significant effects by treatment were found in neurogenic or physiologic parameters. These results indicate that provision of simple structural enrichment is unlikely to have confounding effects on murine anxiety-like behaviors, neurogenesis, body weight gain, or physiologic parameters. We therefore recommend the inclusion of simple structural enrichment, such as an acrylic tunnel, to the standard environmental enrichment of social housing and nesting material for mice.

Publisher

American Association for Laboratory Animal Science

Subject

Animal Science and Zoology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3