The Effects of Ketamine on the Gut Microbiome on CD1 Mice

Author:

Gerb Samantha A1,Dashek Ryan J1,Ericsson Aaron C2,Griffin Rachel3,Franklin Craig L4

Affiliation:

1. Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri

2. Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri; MU Metagenomics Center, University of Missouri, Columbia, Missouri; MU Mutant Mouse Resource and Research Center, University of Missouri, Columbia, Missouri

3. Michigan State College of Veterinary Medicine, East Lancing, Michigan

4. Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri; MU Metagenomics Center, University of Missouri, Columbia, Missouri; MU Mutant Mouse Resource and Research Center, University of Missouri, Columbia, Missouri;, Email: FranklinC@missouri.edu

Abstract

The intestinal microbiota of an organism can significantly alter outcome data in otherwise identical experiments. Occasionally, animals may require sedation or anesthesia for scientific or health-related purposes, and certain anesthetics, such as ketamine, can profoundly affect the gastrointestinal system. While many factors can alter the gut microbiome (GM), the effects of anesthetics on the composition or diversity of the GM have not been established. The goal of the current study was to determine whether daily administration of ketamine would significantly alter the microbiome of CD1 mice. To achieve this goal, female CD1 mice received daily injections of ketamine HCl (100 mg/kg) or the equivalent volume of 0.9% saline for 10 consecutive days. Fecal samples were collected before the first administration and 24 h after the final dose of either ketamine or saline. Samples were analyzed by 16S rRNA sequencing to identify changes between groups in diversity or composition of GM. The study found no significant changes to the GM after serial ketamine administration when treated mice were housed with controls. Therefore, ketamine administration is unlikely to alter the GM of a CD1 mouse and should not serve be a confounding factor in reproducibility of research.

Publisher

American Association for Laboratory Animal Science

Subject

General Veterinary,General Biochemistry, Genetics and Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3