Searching for a Bacteriophage Lysin to Treat Corynebacterium bovis in Immunocompromised Mice

Author:

Cheleuitte-Nieves Christopher1,Heselpoth Ryan D2,Westblade Lars F3,Lipman Neil S4,Fischetti Vincent A2

Affiliation:

1. Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York;, Email: cheleuic@mskcc.org

2. Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, New York

3. Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York; Department of Medicine, Division of Infectious Diseases, Weill Cornell Medicine, New York, New York

4. Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York; Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York

Abstract

Corynebacterium bovis is the causative agent of Corynebacterium-associated hyperkeratosis in immunocompromised mice. The resulting skin pathology can be profound and can be associated with severe wasting, making the animals unsuitable for research. Although the administration of antibiotics is effective in resolving clinical symptoms, antibiotics do not eradicate the offending bacterium. Furthermore, antibiotic use may be contraindicated as it can affect tumor growth and is associated with Clostridioides difficile enterotoxemia in highly immunocompromised murine strains. Lysins, which are lytic enzymes obtained from bacteriophages, are novel antimicrobial agents for treating bacterial diseases. The advantage of lysins are its target specificity, with minimal off-target complications that could affect the host or the biology of the engrafted tumor. The aim of this study was to identify lysins active against C. bovis. Chemical activation of latent prophages by using mitomycin C in 3 C. bovis isolates did not cause bacteriophage induction as determined through plaque assays and transmission electron microscopy. As an alternative approach, 8 lysins associated with other bacterial species, including those from the closely related species C. falsenii, were tested for their lytic action against C. bovis but were unsuccessful. These findings were congruent with the previously reported genomic analysis of 21 C. bovis isolates, which failed to reveal bacteriophage sequences by using the PHAST and PHASTER web server tools. From these results, we suggest C. bovis is among those rare bacterial species devoid of lysogenic bacteriophages, thus making the identification of C. bovis-specific lysins more challenging. However, C. bovis may be a useful model organism for studying the effects of antiphage systems.

Publisher

American Association for Laboratory Animal Science

Subject

General Veterinary,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3