Extended Sanitation Intervals for Cage Components and Automated Watering Valves: Validation and Cost Analysis

Author:

Meredith Bryanna1,Clancy Bridget M2,Ostdiek Allison M2,Langan George P2,Luchins Kerith R2

Affiliation:

1. College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina; and

2. Animal Resources Center and Department of Surgery, The University of Chicago, Chicago, Illinois

Abstract

Although the Guide suggests changing rodent cage components every 2 wk, it states that “decreased sanitation frequency may be justified if the microenvironment in the cages, under the condition of use ..., is not compromised.” The purpose of this study was to evaluate extended sanitation intervals of cage components (automated watering valve, wire bar lid, and filter top) of mouse individually ventilated caging (IVCs) at our institution. We hypothesized that there would be no significant difference in relative light units measured by ATP luminometry of these cage components at the control time point of 14 d as compared with each extended time interval: 28, 56, and 84 d. In addition, for automated watering valves, the study was extended to 168 d. We also hypothesized that time-and-motion studies performed by moving to a sanitation interval of 84 d for all components would result in substantial time and cost savings. The components of a total of 24 cages containing 4 or 5 mice each were swabbed, and an ATP luminometer was used to detect organic matter. We found no significant differences in organic matter load between 14 d and all other time points for all cage components. Our time- and cost-savings analysis found that extending the sanitation interval of cage components from every 2 wk (14 d) to every 3 mo (84 d) for every 10,000 cages would save about 3,000 technician hours annually, for a total annual labor cost savings of about $100,000. This study is the first to validate the extended sanitation interval of automated watering valves and confirms the findings of previous studies that validated the extended sanitation frequency of wire bar lids and filter tops of rodent IVCs. Overall, extending the sanitation frequency of cage components reduces workload of animal care staff without compromising the cage microenvironment.

Publisher

American Association for Laboratory Animal Science

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3