Evaluation of a Novel Battery-Operated Tumbler Device for Use in the Detection of Mouse Pathogens for Rodent Health Monitoring

Author:

Sidhu Harmaneek K1,Perkins Cheryl L2,Henderson Ken S2,Hibl Brianne M1,Nouer Simonne S3,Tolley Elizabeth A3,Hamilton David J1

Affiliation:

1. Department of Comparative Medicine, Memphis, Tennessee

2. Charles River Laboratories, Wilmington, Massachusetts

3. Department of Preventative Medicine, University of Tennessee Health Science Center, Memphis, Tennessee

Abstract

The search for alternatives to live animal sentinels in rodent health monitoring programs is fundamental to the 3Rs (Reduction, Replacement, and Refinement) of animal research. We evaluated the efficacy of a novel battery-operated tumbler device that rotates soiled bedding in direct contact with sample media against the use of exhaust sample media and soiled bedding sentinel (SBS) mice. Four rodent racks were used, each with 3 test cages: a cage with a tumbler device that rotated for 10min twice a week (TUM10), a cage with a tumbler device that rotated for 60min twice a week (TUM60), and a cage housing 2 female Crl:CD1(ICR) mice. Every 2 wk, each test cage received soiled bedding collected from all cages on each respective rack. In addition to soiled bedding, the tumbler device contained various sample collection media: a contact Reemay filter (3mo-cRF) that remained in the tumbler for the duration of the study, a contact Reemay filter (1mo-cRF) that was replaced monthly, adhesive swabs (AS) that were added at every biweekly cage change, and an exhaust Reemay filter located at the exhaust outlet of the cage. All analyses were performed by direct PCR for both sample media in the animal-free methods, and fecal pellet, body swab, and oral swabs were collected from sentinel mice. Out of 16 total pathogens detected, assessment of 1mo-Crf from both TUM10 and TUM60 cages detected 84% and 79% of pathogens, respectively, while SBS samples detected only 47% of pathogens. AS in TUM60 and TUM10 cages detected the fewest pathogens (24% and 13%, respectively). These results indicate that the novel tumbler device is an effective and reliable tool for rodent health monitoring programs and a suitable replacement for live animal sentinels. In this study, 1mo-cRF in TUM10 cages detected the highest number of pathogens.

Publisher

American Association for Laboratory Animal Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3