The Impact of (DEM) Accuracy and (LC/LU) Resolution on the Watersheds Areas

Author:

Muttar Alaa Qais,Mustafa Mustafa Tariq,Abdl Shareef Muntasir Abdl Hameed

Abstract

Land Cover/Land Use (LC/LU) and Digital Elevation Model (DEM) are the main inputs for watershed modelling. Recently, (DEM) and (LC/LU) are freely available as online open-source products in varied accuracies, spatial and spectral resolutions as result of several remote sensing platforms. Therefore, it is very important to determine which one is the optimum for modeling the watersheds in the selected study area, which is represented by five valley watersheds of diverse characteristics, located on east and west sides of the Mosul dam reservoir, Nineveh province, Iraq. In this research, the different accuracy of 30m resolution DEMs with Satellites (Copernicus (GLO-30), ASTER, and SRTM), besides to supervised classification (Support vector machines (SVM) classifier) results (LC/LU) main layers (green land, bare soil, urban areas, and water) of different spatial and spectral resolutions images with Satellites (10m Sentinel-2, 30m Landsat-8, and resampled 15m from 30m Landsat-8) are examined by using the techniques of  Remote Sensing (RS) and Geographic Information System (GIS). Analysis of the results led to the finding that Copernicus DEM (GLO-30) 30 m spatial resolution is the most accurate and optimum DEM in the research study area with 1.1615 m vertical accuracy and 2.276 m at 95% confidence level. The optimum most accurate image for (LC/LU) thematic map production in the selected area is (Sentinel-2 l0 m) satellite at overall Classification accuracy (97%) and the overall kappa statistics (95%). The optimum remote sensing data (sentinel-2 image and Copernicus DEM) are mapped, 3D simulated and analyzed by GIS to calculate the areas of (LC/LU) main layers and to find that the considerable part of the selected watersheds is the area of green lands 404.32676 km2 was about 54.396% of the total area in the study, and these areas are vary depending on many factors such as remote sensing data, precipitation, cultivation, season, and human activities.

Publisher

Middle Technical University

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3