Fisher Information and Shannon’s Entropy for Record Values and Their Concomitants under Iterated FGM Family

Author:

,ABD ELGAWAD M. A.,BARAKAT H. M., ,ABDELWAHAB M. M., ,ZAKY M. A., ,HUSSEINY I. A.,

Abstract

Let {(Xi ,Yi), i ≥ 1} be independent and identically distributed random variables (RVs) from a continuous bivariate distribution. If {Rn,n ≥ 1} is the sequence of upper record values in the sequence {Xi}, then the RV Yi, which corresponds to Rn is called the concomitant of the nth record, denoted by R[n]. We study the Shannon entropy (SHANE) of R[n] and (Rn,R[n]) under iterated Farlie-Gumbel-Morgenstern (IFGM) family. In addition, we find the Kullback-Leibler distance (K-L) between R[n] and Rn. Moreover, we study the Fisher information matrix (FIM) for record values and their concomitants about the shape-parameter vector of the IFGM family. Also, we study the relative efficiency matrix of that vector-estimator of the shape-parameter vector whose covariance matrix is equal to Cramer-Rao lower bound, based on record ´ values and their concomitants. In addition, the Fisher information number (FIN) of R[n] is derived. Finally, we evaluate the FI about the mean of exponential distribution in the concomitants of record values.

Publisher

Editura Academiei Romane

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3