Binary Anarchic Society Optimization for Feature Selection

Author:

KILIC Umit, ,SARAC ESSIZ Esra,KAYA KELES Mumine, ,

Abstract

"Datasets comprise a collection of features; however, not all of these features may be necessary. Feature selection is the process of identifying the most relevant features while eliminating redundant or irrelevant ones. To be effective, feature selection should improve classification performance while reducing the number of features. Existing algorithms can be adapted and modified into feature selectors. In this study, we introduce the implementation of the Anarchic Society Optimization algorithm, a human-inspired algorithm, as a feature selector. This is the first study that utilizes the binary version of the algorithm for feature selection. The proposed Binary Anarchic Society Algorithm is evaluated on nine datasets and compared to three known algorithms: Binary Genetic Algorithm, Binary Particle Swarm Optimization, and Binary Gray Wolf Optimization. Additionally, four traditional feature selection techniques (Info Gain, Gain Ratio, Chi-square, and ReliefF) are incorporated for performance comparison. Our experiments highlight the competitive nature of the proposed method, suggesting its potential as a valuable addition to existing feature selection techniques."

Publisher

Editura Academiei Romane

Subject

General Computer Science

Reference56 articles.

1. "[1] M.-C. CRISTESCU, Machine learning techniques for improving the performance metrics of functional verification, Romanian Journal of Information Science and Technology 24(1), 2021, pp. 99-116.

2. [2] I.-D. BORLEA, R.-E. PRECUP and A-B. BORLEA, Improvement of K-means cluster quality by post processing resulted clusters, Procedia Computer Science 199, 2022, pp. 63-70.

3. [3] C. POZNA and R.-E. PRECUP, Aspects concerning the observation process modelling in the framework of cognition processes, Acta Polytechnica Hungarica 9(1), 2012, pp. 203-223.

4. [4] R.-E. PRECUP, C.-A. BOJAN-DRAGOS, E.-L. HEDREA, R.-C. ROMAN and E.-M. PETROU, Evolving fuzzy models of shape memory alloy wire actuators, Romanian Journal of Information Science and Technology 24(4), 2021, pp. 353-365.

5. [5] I. A. ZAMFIRACHE, R.-E. PRECUP, R.-C. ROMAN and E. M. PETRIU, Policy iteration reinforcement learning-based control using a grey wolf optimizer algorithm, Information Sciences 585, 2022, pp.162-175.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3