IoT data analysis for avalanche forecast

Author:

,SEGARCEANU SVETLANA,VATASOIU ROBERT IONUT, ,HIJON CARLOS JAVIER PRADOS, ,LOLOIU SORINA ANDREEA, ,PETRESCU GABRIEL,

Abstract

In mountainous regions worldwide, avalanches pose a significant hazard to infrastructure and human life. Avalanche identification and prediction have relied on labor-intensive and error-prone human observation and analysis. Artificial intelligence (AI) tools have become a promising means of improving the precision and speed of avalanche detection and prediction in recent years. To address this problem, we are developing an early warning system that utilizes Machine Learning techniques. This article examines the most recent research in AI techniques for avalanche detection and prediction, along with the details of our solution implementation. The system gathers and analyses data from various sensors, including meteorological and auditory sensors, to determine the potential risk of an avalanche. An analysis made on the data collected from the sensors placed in the selected region is also presented. Recent investigations have shown that AI algorithms can identify and forecast avalanches. The article discusses the potential benefits and challenges of implementing an early warning system for avalanches, highlighting the importance of continued research in this area. The research was carried out over 2 years within the MEWS project and is based on the fruitful collaboration between all partners involved in the project. The IoT stations used in the research were located in Norway. The current paper presents an analysis of the data collected in the project and a method for avalanche prediction using Feed Forward Neural Networks.

Publisher

Editura Academiei Romane

Reference14 articles.

1. "1. ORTNER, G., BRUNDL, M., KROPF, C. M., ROOSLI, T., BUHLER, Y., BRESCH, D. N., Large-scale risk assessment on snow avalanche hazard in alpine regions, Nat. Hazards Earth Syst. Sci., 23, pp. 2089-2110, https://doi.org/10.5194/nhess-23-2089-2023, 2023.

2. 2. WIESINGER, T., ADAMS, M., Schnee und Lawinen in den Schweizer Alpen Winter 1998/1999, Tech. rep., SLF, Davos, Eidg. Institut für Schnee- und Lawinenforschung SLF, https://doi.org/10.3929/ethz-b-000298085, 2007.

3. 3. DEKANOVA, M., DUCHON, F., DEKAN, M., KYZEK, F., BISKUPIC, M., Avalanche forecasting using neural network, ELEKTRO, Mikulov, Czech Republic, pp. 1-5, 2018, doi: 10.1109/ELEKTRO.2018.8398359.

4. 4. KRAJCI, P., KYZEK, F., BISKUPIC, M., SEDLAK A., A Decade of Automatic Snow Measurements and Observations within Mountain Regions of Slovakia, Snow an ecological phenomenon, September 2017.

5. 5. McCLUNG, D., SCHAERER, P., The Avalanche Handbook, The Mountaineers Books, 2003.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3