Author:
,GOL’DSHTEIN VLADIMIR,SEVOST’YANOV EVGENY, ,UKHLOV ALEXANDER,
Abstract
In this paper, we study connections between composition operators on Sobolev
spaces and mappings defined by p-moduli inequalities (p-capacity inequalities).
We prove that weighted moduli inequalities lead to composition operators on
corresponding Sobolev spaces and conversely, that composition operators on
Sobolev spaces imply weighted moduli inequalities.
Reference42 articles.
1. "[1] L. Ahlfors, Lectures on Quasiconformal Mappings. D. Van Nostrand Co. Inc., Toronto, New York, London, 1966.
2. [2] M. Cristea, The limit mapping of generalized ring homeomorphisms. Complex Var. Elliptic Equ. 61 (2016), 608-622.
3. [3] M. Cristea, On Poleckii-type modular inequalities. Complex Var. Elliptic Equ. 66 (2021), 1818-1838.
4. [4] H. Federer, Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen 153. Springer-Verlag, Berlin, 1969.
5. [5] F.W. Gehring, Lipschitz mappings and the p-capacity of rings in n-space. Advances in the theory of Riemann surfaces (Proc. Conf., Stony Brook, N.Y., 1969), 175-193. Ann. of Math. Studies No. 66. Princeton Univ. Press, Princeton, N.J. 1971.