Patentometric review on automated plant phenotyping

Author:

Kolhar Shrikrishna,Jagtap Jayant,Tiwari Amit Kumar

Abstract

Plant phenotyping involves the measurement of observable traits of plants. Plant traits like leaf area, leaf count, leaf surface temperature, chlorophyll content, plant growth rate, emergence time of leaves, and reproductive organs depend on the interaction of its genotype with the environment. Plant phenotyping serves to analyze biotic and abiotic stresses on plants, select crop varieties resilient to the surrounding environment, and improve crop yield. Recent advancements in imaging technologies help expedite the growth of automatic, non-invasive, and efficient plant phenotyping systems. These plant phenotyping systems involve using different imaging techniques like visible imaging, hyperspectral imaging, chlorophyll fluorescence imaging (CFIM), thermal imaging to record, monitor, and analyze plant phenotypes using images. In the last few years, researchers have been working on developing image processing, computer vision, machine learning, and deep learning approaches for the accurate and precise analysis of plant images. Therefore, this paper reviews and presents insights about the research reported through patents in the area of automatic plant phenotyping. This review report uses patent databases like Espacenet, Lens, and Google Patents to search, review and analyze patent documents. The paper presents a patentometric analysis of all 67 patent documents available till date focusing on automatic image-based plant phenotyping. The review provides a summary and analysis of outstanding patents in terms of qualitative and quantitative patent indices. This article provides a comprehensive global patent study to aid researchers and scientists develop more efficient plant phenotyping algorithms, devices, and systems.

Publisher

Taru Publications

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3