Optimized deterministic multikernel extreme learning machine for classification of COVID-19 chest Xray images

Author:

Husain Arshi,Vishvakarma Virendra P.

Abstract

In this paper, a novel technique has been proposed to exploit the capability of residual network (ResNet) deep learning model to extract the features. It is utilized neither in pretrained form nor as a transfer learning model. ResNet uses shortcut connections to create shortcut blocks in order to skip blocks of convolutional layers (residual blocks). These stacked residual blocks significantly increase training effectiveness and address the degradation issue. For the purpose of classification, a multiple kernel learning based deterministic extreme learning machine (MKD-ELM) which uses a linear combination of different base kernels as target kernel function is designed to classify chest Xray images. Multiple kernels are used here to exploit their non-linear mapping capability on heterogeneous data. MKD-ELM is an enhanced classifier, which does not require iterative training of its parameters. The proposed technique has better feature extraction along with non-iterative training, thus it is having very fast training and very good generalization performance. The kernel and regularization parameters that influence how accurate MKD-ELM is at classifying data, are tuned through experimentation. So, an optimization technique called the genetic algorithm (GA) has been utilized to determine the ideal combination of these parameters for improved performance. The performance of the proposed technique is analysed for COVID-19 detection problem using chest Xray (ChXR) images by changing the training set, types of kernels and coefficients used for combining base kernels. The proposed algorithm achieves a 97.27% recognition rate on first dataset which comprises 5,856 images and 99.06% on the second dataset which consists of 13,808 images. A higher recognition rate is attained for these ChXR image datasets, in respect to modern techniques demonstrating the effectiveness of the proposed algorithm.

Publisher

Taru Publications

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3