Artificial intelligence-based classification performance evaluation in monophonic and polyphonic indian classical instruments recognition with hybrid domain features amalgamation
-
Published:2023
Issue:3
Volume:44
Page:341-353
-
ISSN:0252-2667
-
Container-title:Journal of Information and Optimization Sciences
-
language:
-
Short-container-title:JIOS
Author:
Chitre Abhijit V.,Wanjale Kirti,Deshmukh Aradhanaa,Kosbatwar Shyamsunder P.,Ingle Anup,Hundekari Sheela
Abstract
In computer music, instrument recognition is a critical part of sound modeling. Pitch, timbre, loudness, duration, and spatialization are all components of musical sounds. All of these components play a significant part in determining the quality of the tonal sound. It is possible to alter the first four parameters, but timbre always poses a challenge [6]. It was inevitable that timbre would take center stage. Musical instruments are distinguished from one other by their distinct sound quality, independent of their pitch or volume. To distinguish between monophonic and polyphonic music recordings, this method might be used. In Musical Information Retrieval, classification plays one of the critical role. Monophonic instrument classification can be found in literature with quiet a substantial combinations of features and classifiers. Polyphonic instrument classification witnessed less references in the literature and is still an area to be explored specifically when it comes to Indian Classical domain. The present paper exactly focusses on this experimentation. Several Indian instruments were used to produce training data sets for the proposed approach’s evaluation purposes. Among the instruments utilized are the flute, harmonium, and sitar. Statistical and spectral factors are used to classify Indian musical instruments along with the Artificial Intelligence-based methods. Hybrid features from multiple domains that extract essential musical properties are extracted. Accuracy is demonstrated through an Indian Musical Instrument SVM and GMM classification. With monophonic sounds, SVM and Polyphonic produce an average accuracy of 89% and 91%. GMM outperforms SVM in monophonic recordings by a factor of 96.33 and polyphonic recordings by a factor of 93.33, according to the results of the studies. The future scope of this recognition framework can be an Artificial Intelligence System with a system linked with the Industrial Internet of Things (IIOT) framework to develop a standalone system or application which can be used for real- time classification of instruments.
Publisher
Taru Publications
Subject
General Earth and Planetary Sciences,General Environmental Science