Age Differences in Learning-Related Neurophysiological Changes

Author:

Tinga Angelica M.1,Menger Nick S.1,de Back Tycho T.1,Louwerse Max M.1

Affiliation:

1. Department of Cognitive Science & Artificial Intelligence, Tilburg University, Tilburg, The Netherlands

Abstract

Abstract: Research in young adults has demonstrated that neurophysiological measures are able to provide insight into learning processes. However, to date, it remains unclear whether neurophysiological changes during learning in older adults are comparable to those in younger adults. The current study addressed this issue by exploring age differences in changes over time in a range of neurophysiological outcome measures collected during visuomotor sequence learning. Specifically, measures of electroencephalography (EEG), skin conductance, heart rate, heart rate variability, respiration rate, and eye-related measures, in addition to behavioral performance measures, were collected in younger ( Mage = 27.24 years) and older adults ( Mage = 58.06 years) during learning. Behavioral responses became more accurate over time in both age groups during visuomotor sequence learning. Yet, older adults needed more time in each trial to enhance the precision of their movement. Changes in EEG during learning demonstrated a stronger increase in theta power in older compared to younger adults and a decrease in gamma power in older adults while increasing slightly in younger adults. No such differences between the two age groups were found on other neurophysiological outcome measures, suggesting changes in brain activity during learning to be more sensitive to age differences than changes in peripheral physiology. Additionally, differences in which neurophysiological outcomes were associated with behavioral performance on the learning task were found between younger and older adults. This indicates that the neurophysiological underpinnings of learning may differ between younger and older adults. Therefore, the current findings highlight the importance of taking age into account when aiming to gain insight into behavioral performance through neurophysiology during learning.

Publisher

Hogrefe Publishing Group

Subject

Physiology,Neuropsychology and Physiological Psychology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cortical dynamics of automated driving across the spectrum of cognitive aging: A proof-of-concept study;Transportation Research Part F: Traffic Psychology and Behaviour;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3