Daytime Acute Non-Visual Alerting Response in Brain Activity Occurs as a Result of Short- and Long-Wavelengths of Light

Author:

Łaszewska Kamila1,Goroncy Agnieszka2,Weber Piotr3,Pracki Tadeusz1,Tafil-Klawe Małgorzata1,Pracka Daria1,Złomańczuk Piotr1

Affiliation:

1. Department of Physiology, Nicolaus Copernicus University, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Poland

2. Department of Probability Theory and Stochastic Analysis, Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland

3. Department of Atomic, Molecular and Optical Physics, Gdańsk University of Technology, Gdańsk, Poland

Abstract

Abstract. Very recent preliminary findings concerning the alerting capacities of light stimulus with long-wavelengths suggest the existence of neural pathways other than melatonin suppression that trigger the nonvisual response. Though the nonvisual effects of light during the daytime have not been investigated thoroughly, they are definitely worth investigating. The purpose of the present study is to enrich existing evidence by describing how quantitative electroencephalography (EEG) signal analysis can give insight into the measurement of the acute nonvisual response observed in brain states generated during daytime exposure to light (when melatonin secretion is negligible). EEG changes were assessed in 19 subjects during the daytime while being exposed to both short- (blue, 72 μW/cm2) and long-wavelength (red, 18 μW/cm2) radiation. We showed that artificial light stimulus as low as 40 lux decreases the synchronization in the upper theta, lower alpha, and upper alpha EEG activity spectrum. The direction of change was consistent with an increased level of alertness. We can conclude that EEG analysis is an indicator of the acute nonvisual response to daytime light. Surprisingly, the response was more spread over the scalp during exposure to red light than to blue light. According to our study, the response to long-wavelength stimulus that inhibits sleepiness, thereby inducing alertness, also takes place at the bright part of the 24-hr day when human beings are naturally predisposed to be exposed to a high level of sunlight: between 12 and 4 PM. The absorption spectrum of the nonvisual system seems to have different characteristics than was previously suspected: it is not dominated by the short-wavelengths, but involves long-wavelengths. Since we observed the predominance of the red-light alerting effect over the blue-light in this experiment, we conclude that more than one mechanism, beyond the melatonin pathway, must be involved.

Publisher

Hogrefe Publishing Group

Subject

Physiology,Neuropsychology and Physiological Psychology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3