Identifying Careless Responding in Web-Based Surveys

Author:

Pokropek Artur1ORCID,Żółtak Tomasz1,Muszyński Marek1ORCID

Affiliation:

1. Computational Social Science Department, Institute of Philosophy and Sociology, Polish Academy of Sciences, Poland

Abstract

Abstract: The increasing use of web-based surveys in social sciences research has brought forth the challenge of effectively identifying and managing inattentive/careless responding. The existing detection methods have shown limited success, highlighting the need for improved methodologies. This study introduces a novel approach that utilizes time-stamped action sequence data of mouse movements and employs deep learning models to detect careless responding. It introduces the concept of Approximate Areas of Interest (AAOIs) along with the application of Gated Recurrent Units (GRUs) and Bidirectional Long Short-Term Memory (BiLSTM) models. This research presents a flexible and efficient tool that can be applied across different scales and survey contexts. The results demonstrate the superior performance of the proposed approach in identifying group membership, achieving up to 95% accuracy when tested on experimental data with induced inattentiveness. The presented approach offers a potentially promising tool for overcoming the pervasive challenge of detecting careless responding in computer-based surveys.

Publisher

Hogrefe Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3