Normality and Sample Size Do Not Matter for the Selection of an Appropriate Statistical Test for Two-Group Comparisons

Author:

Poncet Antoine12,Courvoisier Delphine S.12,Combescure Christophe12,Perneger Thomas V.12

Affiliation:

1. Division of Clinical Epidemiology, Geneva University Hospitals, Switzerland

2. Faculty of Medicine, University of Geneva, Switzerland

Abstract

Abstract. Many applied researchers are taught to use the t-test when distributions appear normal and/or sample sizes are large and non-parametric tests otherwise, and fear inflated error rates if the “wrong” test is used. In a simulation study (four tests: t-test, Mann-Whitney test, Robust t-test, Permutation test; seven sample sizes between 2 × 10 and 2 × 500; four distributions: normal, uniform, log-normal, bimodal; under the null and alternate hypotheses), we show that type 1 errors are well controlled in all conditions. The t-test is most powerful under the normal and the uniform distributions, the Mann-Whitney test under the lognormal distribution, and the robust t-test under the bimodal distribution. Importantly, even the t-test was more powerful under asymmetric distributions than under the normal distribution for the same effect size. It appears that normality and sample size do not matter for the selection of a test to compare two groups of same size and variance. The researcher can opt for the test that fits the scientific hypothesis the best, without fear of poor test performance.

Publisher

Hogrefe Publishing Group

Subject

General Psychology,General Social Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3