Recovering Transitions From Repeated Cross-Sectional Samples

Author:

Eisinga Rob1

Affiliation:

1. Radboud University Nijmegen, The Netherlands

Abstract

This paper proposes a dynamic Markov model for the estimation of binary state-to-state transition probabilities from a sequence of independent cross-sectional samples. It discusses parameter estimation and inference using maximum likelihood (ML) methodology. The model is illustrated by the application of a three-wave panel study on pupils’ interest in learning physics. These data encompass more information than what is used to estimate the model, but this surplus information allows us to assess the accuracy and the precision of the transition estimates. Bootstrap and Bayesian simulations are used to evaluate the accuracy and the precision of the ML estimates. To mimic genuine cross-sectional data, samples of independent observations randomly drawn from the panel are also analyzed.

Publisher

Hogrefe Publishing Group

Subject

General Psychology,General Social Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3