Applying Circular Statistics to the Analysis of Monitoring Data

Author:

Kubiak Thomas1,Jonas Cornelia1

Affiliation:

1. University of Greifswald, Germany

Abstract

Abstract. Patterns of psychological variables in time have been of interest to research from the beginning. This is particularly true for ambulatory monitoring research, where large (cross-sectional) time-series datasets are often the matter of investigation. Common methods for identifying cyclic variations include spectral analyses of time-series data or time-domain based strategies, which also allow for modeling cyclic components. Though the prerequisites of these sophisticated procedures, such as interval-scaled time-series variables, are seldom met, their usage is common. In contrast to the time-series approach, methods from a different field of statistics, directional or circular statistics, offer another opportunity for the detection of patterns in time, where fewer prerequisites have to be met. These approaches are commonly used in biology or geostatistics. They offer a wide range of analytical strategies to examine “circular data,” i.e., data where period of measurement is rotationally invariant (e.g., directions on the compass or daily hours ranging from 0 to 24, 24 being the same as 0). In psychology, however, circular statistics are hardly known at all. In the present paper, we intend to give a succinct introduction into the rationale of circular statistics and describe how this approach can be used for the detection of patterns in time, contrasting it with time-series analysis. We report data from a monitoring study, where mood and social interactions were assessed for 4 weeks in order to illustrate the use of circular statistics. Both the results of periodogram analyses and circular statistics-based results are reported. Advantages and possible pitfalls of the circular statistics approach are highlighted concluding that ambulatory assessment research can benefit from strategies borrowed from circular statistics.

Publisher

Hogrefe Publishing Group

Subject

Applied Psychology

Reference25 articles.

1. Box, G.E.P. Jenkins, G.M. Reinsel, G.C. (1994).Time series analysis. Forecasting and control. Englewood Cliffs, NJ: Prentice Hall

2. Chatfield, C. (2004).The analysis of time series. New York: Chapman & Hall

3. Psychological and Psychophysiological Ambulatory Monitoring

4. Ambulatory Assessment of Affective Instability in Borderline Personality Disorder

5. Fahrenberg, J. Huettner, P. Leonhart, R. (2001). MONITOR: Acquisition of psychological data by a hand-held PC. In J. Fahrenberg & M. Myrtek (Eds.),Progress in ambulatory assessment(pp. 93-112). Seattle: Hogrefe & Huber

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3