On the Definition of Latent-State-Trait Models With Autoregressive Effects

Author:

Eid Michael1,Holtmann Jana1,Santangelo Philip2,Ebner-Priemer Ulrich2

Affiliation:

1. Department of Educational Science and Psychology, Freie Universität Berlin, Germany

2. Department of Sport and Sport Science and House of Competence, Karlsruhe Institute of Technology, Germany

Abstract

Abstract. In longitudinal studies with short time lags, classical models of latent state-trait (LST) theory that assume no carry-over effects between neighboring occasions of measurement are often inappropriate, and have to be extended by including autoregressive effects. The way in which autoregressive effects should be defined in LST models is still an open question. In a recently published revision of LST theory (LST-R theory), Steyer, Mayer, Geiser, and Cole (2015) stated that the trait-state-occasion (TSO) model ( Cole, Martin, & Steiger, 2005 ), one of the most widely applied LST models with autoregressive effects, is not an LST-R model, implying that proponents of LST-R theory might recommend not to apply the TSO model. In the present article, we show that a version of the TSO model can be defined on the basis of LST-R theory and that some of its restrictions can be reasonably relaxed. Our model is based on the idea that situational effects can change time-specific dispositions, and it makes full use of the basic idea of LST-R theory that dispositions to react to situational influences are dynamic and malleable. The latent variables of the model have a clear meaning that is explained in detail.

Publisher

Hogrefe Publishing Group

Subject

Applied Psychology

Reference17 articles.

1. Diagnostic and Statistical Manual of Mental Disorders

2. Empirical and Conceptual Problems With Longitudinal Trait-State Models: Introducing a Trait-State-Occasion Model.

3. Eid, M., Courvoisier, D. S. & Lischetzke, T. (2012). Structural equation modeling of ambulatory assessment data. In M. R. Mehl & T. S. Connor (Eds.), Handbook of research methods for studying daily life (pp. 384–406). New York, NY: Guilford Press.

4. A critique of the cross-lagged panel model.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3