Testing Hypotheses About Binding in Context Memory With a Hierarchical Multinomial Modeling Approach

Author:

Arnold Nina R.1ORCID,Heck Daniel W.1,Bröder Arndt1,Meiser Thorsten1,Boywitt C. Dennis1

Affiliation:

1. Department of Psychology, School of Social Sciences, University of Mannheim, Germany

Abstract

Abstract. In experiments on multidimensional source memory, a stochastic dependency of source memory for different facets of an episode has been repeatedly demonstrated. This may suggest an integrated representation leading to mutual cuing in context retrieval. However, experiments involving a manipulated reinstatement of one source feature have often failed to affect retrieval of the other feature, suggesting unbound features or rather item-feature binding. The stochastic dependency found in former studies might be a spurious correlation due to aggregation across participants varying in memory strength. We test this artifact explanation by applying a hierarchical multinomial model. Observing stochastic dependency when accounting for interindividual differences would rule out the artifact explanation. A second goal is to elucidate the nature of feature binding: Contrasting encoding conditions with integrated feature judgments versus separate feature judgments are expected to induce different levels of stochastic dependency despite comparable overall source memory if integrated representations include feature-feature binding. The experiment replicated the finding of stochastic dependency and, thus, ruled out an artifact interpretation. However, we did not find different levels of stochastic dependency between conditions. Therefore, the current findings do not reveal decisive evidence to distinguish between the feature-feature binding and the item-context binding account.

Publisher

Hogrefe Publishing Group

Subject

General Psychology,Arts and Humanities (miscellaneous),Experimental and Cognitive Psychology,General Medicine

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3