Sentiment Analysis using a CNN-BiLSTM Deep Model Based on Attention Classification

Author:

Yue Wang, ,Lei Li,

Abstract

With the rapid development of the Internet, the number of social media and e-commerce platforms increased dramatically. Users from all over world share their comments and sentiments on the Internet become a new tradition. Applying natural language processing technology to analyze the text on the Internet for mining the emotional tendencies has become the main way in the social public opinion monitoring and the after-sale feedback of manufactory. Thus, the study on text sentiment analysis has shown important social significance and commercial value. Sentiment analysis is a hot research topic in the field of natural language processing and data mining in recent ten years. The paper starts with the topic of "Sentiment Analysis using a CNN-BiLSTM deep model based on attention mechanism classification". First, it conducts an in-depth investigation on the current research status and commonly used algorithms at home and abroad, and briefly introduces and analyzes the current mainstream sentiment analysis methods. As a direction of machine learning, deep learning has become a hot research topic in emotion classification in the field of natural language processing. This paper uses deep learning models to study the sentiment classification problem of short and long text sentiment classification tasks. The main research contents are as follows. Firstly, Traditional neural network based short text classification algorithms for sentiment classification is easy to find the errors. The feature dimension is too high, and the feature information of the pool layer is lost, which leads to the loss of the details of the emotion vocabulary. To solve this problem, the Word Vector Model (Word2vec), Bidirectional Long-term and Short-term Memory networks (BiLSTM) and convolutional neural network (CNN) are combined in Quora dataset. The experiment shows that the accuracy of CNN-BiLSTM model associated with Word2vec word embedding achieved 91.48%. This proves that the hybrid network model performs better than the single structure neural network in short text. Convolutional neural network (CNN) models use convolutional layers and maximum pooling or max-overtime pooling layers to extract higher-level features, while LSTM models can capture long- term dependencies between words hence are better used for text classification. However, even with the hybrid approach that leverages the powers of these two deep-learning models, the number of features to remember for classification remains huge, hence hindering the training process. Secondly, we propose an attention based CNN-BiLSTM hybrid model that capitalize on the advantages of LSTM and CNN with an additional attention mechanism in IMDB movie reviews dataset. In the experiment, under the control of single variable of Data volume and Epoch, the proposed hybrid model was compared with the results of various indicators including recall, precision, F1 score and accuracy of CNN, LSTM and CNN-LSTM in long text. When the data size was 13 k, the proposed model had the highest accuracy at 0.908, and the F1 score also showed the highest performance at 0.883. When the epoch value for obtaining the optimal accuracy of each model was 10 for CNN, 14 for LSTM, 5 for MLP and 15 epochs for CNN-LSTM, which took the longest learning time. The F1 score also showed the best performance of the proposed model at 0.906, and accuracy of the proposed model was the highest at 0.929. Finally, the experimental results show that the bidirectional long- and short-term memory convolutional neural network (BiLSTM-CNN) model based on attention mechanism can effectively improve the performance of sentiment classification of data sets when processing long-text sentiment classification tasks. Keywords: sentiment analysis, CNN, BiLSTM, attention mechanism, text classification

Publisher

International Information Institute

Subject

Information Systems

Reference56 articles.

1. [1] Ceraj, T.; Kliman, I.; Kutnjak, M. Redefining Cancer Treatment: Comparison of Word2vec Embeddings Using Deep BiLSTM Classification Model; Text Analysis and Retrieval 2019 Course Project Reports; Faculty of Electrical Engineering and Computing, University of Zagreb: Zagreb, Croatia, July 2019.

2. [2] Rehman, A.U.; Malik, A.K.; Raza, B.; Ali, W. A Hybrid CNN-LSTM Model for. Improving Accuracy of Movie Reviews Sentiment Analysis. Multimed. Tools Appl. 2019, 78, 26597-26613.

3. [3] REN P J, CHEN Z M, REN Z C, et al. Leveraging contextual sentence relations for extractive summarization using a neural attention model[C]. Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2017: 95-104.

4. [4] Yoon, J.; Kim, H. Multi-Channel Lexicon Integrated CNN-BiLSTM Models for Sentiment Analysis.

5. In Proceedings of the 29th Conference on Computational. Linguistics and Speech Processing (ROCLING 2017), Taipei, Taiwan, 27-28 November 2017; pp. 244-253.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3