Modelling and Simulating a Transmission of COVID-19 Disease: Niger Republic Case
-
Published:2020-07-31
Issue:3
Volume:13
Page:549-566
-
ISSN:1307-5543
-
Container-title:European Journal of Pure and Applied Mathematics
-
language:
-
Short-container-title:Eur. J. Pure Appl. Math.
Author:
Oumarou Abba Mahamane,Bisso Saley
Abstract
This paper focuses on the dynamics of spreads of a coronavirus disease (Covid-19).Through this paper, we study the impact of a contact rate in the transmission of the disease. We determine the basic reproductive number R0, by using the next generation matrix method. We also determine the Disease Free Equilibrium and Endemic Equilibrium points of our model. We prove that the Disease Free Equilibrium is asymptotically stable if R0 < 1 and unstable if R0 > 1. The asymptotical stability of Endemic Equilibrium is also establish. Numerical simulations are made to show the impact of contact rate in the spread of disease.
Publisher
New York Business Global LLC
Subject
Applied Mathematics,Geometry and Topology,Numerical Analysis,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献