Abstract
In this paper, we consider the stiff systems of ordinary differential equations arising from chemistry kinetics. We develop the fractional order model for chemistry kinetics problems by using the Caputo Fabrizio and Atangana-Baleanu derivatives in Caputo sense. We apply the Sumudu transform to obtain the solutions of the models. Uniqueness and stability analysis ofthe problem are also established by using the fixed point theory results. Numerical results are obtained by using the proposed schemes which supports theoretical results. These concepts are very important for using the real-life problems like Brine tank cascade, Recycled Brine tank cascade, pond pollution, home heating and biomass transfer problem. These results are crucial for solving the nonlinear model in chemistry kinetics.
Publisher
New York Business Global LLC
Subject
Applied Mathematics,Geometry and Topology,Numerical Analysis,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献