Regularity on Variants of Transformation Semigroups that Preserve an Equivalence Relation
-
Published:2022-10-31
Issue:4
Volume:15
Page:2116-2126
-
ISSN:1307-5543
-
Container-title:European Journal of Pure and Applied Mathematics
-
language:
-
Short-container-title:Eur. J. Pure Appl. Math.
Author:
Tantong Piyaporn,Sawatraksa Nares
Abstract
The variant of a semigroup $ S $ with respect to an element $ a\in S $, is the semigroup with underlying set $ S $ and a new binary operation $ \ast $ defined by $ x\ast y=xay $ for $ x, y\in S $. Let $ T(X) $ be the full transformation semigroup on a nonempty set $ X $. For an arbitrary equivalence $ E $ on $ X $, let \[T_{E}(X)=\{\alpha\in T(X) : \forall a, b\in X, (a, b)\in E \Rightarrow (a\alpha, b\alpha\in E)\}.\] Then $ T_{E}(X) $ is a subsemigroup of $ T(X) $. In this paper, we investigate regular, left regular and right regular elements for the variant of some subsemigroups of the semigroup $ T_{E}(X) $.
Publisher
New York Business Global LLC
Subject
Applied Mathematics,Geometry and Topology,Numerical Analysis,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science