Solving nth-order Integro-differential Equations by Novel Generalized Hybrid Transform
-
Published:2023-07-30
Issue:3
Volume:16
Page:1940-1955
-
ISSN:1307-5543
-
Container-title:European Journal of Pure and Applied Mathematics
-
language:
-
Short-container-title:Eur. J. Pure Appl. Math.
Author:
Khan Sana Ullah,Khan Asif,Ullah Aman,Ahmad Shabir,Awwad Fuad A.,Ismail Emad A. A.,Maitama Shehu,Umar Huzaifa,Ahmad Hijaz
Abstract
Recently, Shehu has introduced an integral transform called Shehu transform, which generalizes the two well-known integrals transforms, i.e. Laplace and Sumudu transform. In the literature, many integral transforms were used to compute the solution of integro-differential equations (IDEs). In this article, for the first time, we use Shehu transform for the computation of solution of $n^{\text{th}}$-order IDEs. We present a general scheme of solution for $n^{\text{th}}$-order IDEs. We give some examples with detailed solutions to show the appropriateness of the method. We present the accuracy, simplicity, and convergence of the proposed method through tables and graphs.
Publisher
New York Business Global LLC
Subject
Applied Mathematics,Geometry and Topology,Numerical Analysis,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献