Abstract
Let $N_m$ be the set of positive integers $1, 2, \cdots, m$ and $S \subseteq N_m$. In 2000, J. Caumeran and R. Corcino made a thorough investigation on counting restricted functions $f_{|S}$ under each of the following conditions:\begin{itemize}\item[(\textit{a})]$f(a) \leq a$, $\forall a \in S$;\item[(\textit{b})] $f(a) \leq g(a)$, $\forall a \in S$ where $g$ is any nonnegative real-valued continuous functions;\item[(\textit{c})] $g_1(a) \leq f(a) \leq g_2(a)$, $\forall a \in S$, where $g_1$ and $g_2$ are any nonnegative real-valued continuous functions.\end{itemize}Several formulae and identities were also obtained by Caumeran using basic concepts in combinatorics.In this paper, we count those restricted functions under condition $f(a) \leq a$, $\forall a \in S$, which is one-to-one and onto, and establish some formulas and identities parallel to those obtained by J. Caumeran and R. Corcino.
Publisher
New York Business Global LLC
Subject
Applied Mathematics,Geometry and Topology,Numerical Analysis,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science