A Force Function Formula for Solutions of Nonlinear Weakly Singular Volterra Integral Equations

Author:

Sarfo Kwasi Frempong,Obeng-Denteh William,Takyi Ishmael,Darkwah Kwaku Forkuoh

Abstract

In this paper, we examine the nonlinear Weakly Singular Volterra Integral Equation(WSVIE),  $u(x)=f(x)+\int_{0}^{x}\frac{t^{\mu-1}}{x^\mu}[u(t)]^\beta dt$. AL-Jawary and Shehan used Daftardar-Jafari Method(DJM) and solved the above integral equation for the investigation parameter $\mu>1$ using specific force functions with $\mu$ and $\beta$ values and obtained unique solutions. We have discovered a force function $f(x)=x^{k_1}-{\frac{x^{\gamma k_1}}{\gamma k_1+\mu}}$, that allows the introduction of noise terms phenomena discovered by Wazwaz; that cancel out the terms of the power series in the successive solution terms $u_m$, $m=0,1,2,...,n$: we thus obtain a maximum finite power series terms for each solution term called truncation point and denoted by $x^{g(n)}$.  Such that the integral solution can be written as $u(x)=u_0+\sum_{m=1}^{n}u_m$, where $n$ is finite. Simplifying the solution terms we get the unique solution $u(x)=x^{k_1}$, irrespective of $n-$value in the truncation point. We discovered a formula relation between the last solution term $u_n$ and the truncation point as $u_n=a_nx^{g(n)}$. Our results confirm the results of the two solution examples of AL-Jawary and Shehan for the investigation parameter $\mu>1$. We extend the parameter range to include $\mu>1$ and $0<\mu\leq 1$ for our solution. In addition, for any chosen rational parameter $k_1$, the solution $u(x)=x^{k_1}$ is extrapolated to be valid for all integer parameter values $\beta\geq 2$, and positive rational parameter value $\mu>0$  and for any finite value of $n\geq2$.

Publisher

New York Business Global LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3