A Descent Four-Term of Liu and Storey Conjugate Gradient Method for Large Scale Unconstrained Optimization Problems

Author:

Alhawarat Ahmad,Alolaiyan Hanan,Masmali Ibtisam A,Salleh Zabidin,Ismail ShahrinaORCID

Abstract

The conjugate gradient (CG) method is a useful tool for obtaining the optimum point for unconstrained optimization problems since it does not require a second derivative or its approximations. Moreover, the conjugate gradient method can be applied in many fields such as machine learning, deep learning, neural network, and many others. This paper constructs a four-term conjugate gradient method that satisfies the descent property and convergence properties to obtain the stationary point. The new modification was constructed based on Liu and Storey's conjugate gradient method, two-term conjugate gradient method, and three-term conjugate gradient method. To analyze the efficiency and robustness, we used more than 150 optimization functions from the CUTEst library with different dimensions and shapes. The numerical results show that the new modification outperforms the recent conjugate gradient methods such as CG-Descent, Dai and Liao, and others in terms of number of functions evaluations, number of gradient evaluations, number of iterations, and CPU time.

Publisher

New York Business Global LLC

Subject

Applied Mathematics,Geometry and Topology,Numerical Analysis,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3