Abstract
This paper introduces and investigates a variant of partial domination called the connected α-partial domination. For any graph G = (V (G), E(G)) and α ∈ (0, 1], a set S ⊆ V (G) is an α-partial dominating set in G if |N[S]| ≥ α |V (G)|. An α-partial dominating set S ⊆ V (G) is a connected α-partial dominating set in G if ⟨S⟩, the subgraph induced by S, is connected. The connected α-partial domination number of G, denoted by ∂Cα(G), is the smallest cardinality of a connected α-partial dominating set in G. In this paper, we characterize the connected α-partial dominating sets in the join and lexicographic product of graphs for any α ∈ (0, 1] and determine the corresponding connected α-partial domination numbers of graphs resulting from the said binary operations. Moreover, we establish sharp bounds for the connected α-partial domination numbers of the corona and Cartesian product of graphs. Furthermore, we determine ∂Cα(G) of some special graphs when α =1/2. Several realization problems are also generated in this paper.
Publisher
New York Business Global LLC
Subject
Applied Mathematics,Geometry and Topology,Numerical Analysis,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Restrained Global Defensive Alliances in Graphs;European Journal of Pure and Applied Mathematics;2024-07-31
2. Partial domination in supercubic graphs;Discrete Mathematics;2024-01