Wavelet Kernel Principal Component Analysis in Noisy Multiscale Data Classification

Author:

Xie Shengkun1,Lawniczak Anna T.2,Krishnan Sridhar1,Lio Pietro3

Affiliation:

1. Department of Electrical and Computer Engineering, Ryerson University, Toronto, ON, M5B 2K3, Canada

2. Mathematics and Statistics Department, University of Guelph, Guelph, ON, Canada N1G 2W1

3. Computer Laboratory, University of Cambridge, Cambridge CB3 0FD, UK

Abstract

We introduce multiscale wavelet kernels to kernel principal component analysis (KPCA) to narrow down the search of parameters required in the calculation of a kernel matrix. This new methodology incorporates multiscale methods into KPCA for transforming multiscale data. In order to illustrate application of our proposed method and to investigate the robustness of the wavelet kernel in KPCA under different levels of the signal to noise ratio and different types of wavelet kernel, we study a set of two-class clustered simulation data. We show that WKPCA is an effective feature extraction method for transforming a variety of multidimensional clustered data into data with a higher level of linearity among the data attributes. That brings an improvement in the accuracy of simple linear classifiers. Based on the analysis of the simulation data sets, we observe that multiscale translation invariant wavelet kernels for KPCA has an enhanced performance in feature extraction. The application of the proposed method to real data is also addressed.

Funder

European Commission

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multiscale Wavelet Kernel Regularization-Based Feature Extraction Method for Electronic Nose;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2022-11

2. Kernel Regression;Wiley StatsRef: Statistics Reference Online;2021-09-14

3. Development of novel hybridized models for urban flood susceptibility mapping;Scientific Reports;2020-07-31

4. Multiparametric modeling of the ineffective efforts in assisted ventilation within an ICU;Medical & Biological Engineering & Computing;2015-06-17

5. Noise Effects on Spatial Pattern Data Classification Using Wavelet Kernel PCA;Advances in Neural Networks – ISNN 2013;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3