Affiliation:
1. Physics Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Abstract
First-principles total energy calculations of the structural and electronic properties of Ce-doped fullerene have been performed within the framework of the density functional theory at the generalized gradient approximation level. Among various locations, Ce atom was found to engage with the six-fold carbon ring. The total energy is found to significantly change as the Ce atom being shifted from the center of the cage toward the edge close to the six-membered ring where the total energy reaches its local minimum. Moreover, repulsive interaction between Ce atom and the cage components turns as the adatom directly interacts with the six C atoms of the ring. The lowest-energy CeC60 geometry is found to have a binding energy of approximately 5.34 eV, suggesting strong interaction of the dopant with the cage members. Furthermore, fundamental key structural parameters and the total density of states of the optimized structure have been determined and compared with the available data.
Funder
King Abdulaziz University
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献