Affiliation:
1. Computer Department, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
Abstract
This paper presents a human gait recognition algorithm based on a leg gesture separation. Main innovation in this paper is gait recognition using leg gesture classification which is invariant to covariate conditions during walking sequence and just focuses on underbody motions and a neuro-fuzzy combiner classifier (NFCC) which derives a high precision recognition system. At the end, performance of the proposed algorithm has been validated by using the HumanID Gait Challenge data set (HGCD), the largest gait benchmarking data set with 122 objects with different realistic parameters including viewpoint, shoe, surface, carrying condition, and time. And it has been compared to recent algorithm of gait recognition.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献