Affiliation:
1. Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta 36, Km. 601, Río Cuarto, 5800 Córdoba, Argentina
Abstract
Drought stress is one of the most important environmental factors that regulate plant growth and development and limit its production. Peanut (Arachis hypogaea L.) is an agriculturally valuable plant with widespread distribution in the world serving as a subsistence food crop as well as a source of various food products. The aims of this work were to evaluate growth and nodulation as well as some physiological and biochemical stress indicators in response to drought stress and subsequent rehydration in the symbiotic association peanut-Bradyrhizobium sp. SEMIA6144. Drought stress affected peanut growth reducing shoot dry weight, nodule number, and dry weight as well as nitrogen content, but root dry weight increased reaching a major exploratory surface. Besides, this severe water stress induced hydrogen peroxide production associated with lipid and protein damage; however, the plant was able to increase soluble sugar and abscisic acid contents as avoidance strategies to cope with drought stress. These physiological and biochemical parameters were completely reversed upon rehydration, in a short period of time, in the symbiotic association peanut-Bradyrhizobium sp. Thus, the results provided in this work constitute the initial steps of physiological and biochemical responses to drought stress and rehydration in this nodulated legume.
Funder
Secretaria de Estado de Ciência e Tecnologia
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献