Chemical Degradation of Epoxy-Polyamide Primer by Electrochemical Impedance Spectroscopy

Author:

Duraisamy Ramesh1,Pownsamy Kannan1,Asgedom Ghebray1

Affiliation:

1. Department of Chemistry, College of Science, Eritrea Institute of Technology, Mai Nefhi, Asmara, Eritrea

Abstract

The degradation of organic-inorganic hybrid materials based on epoxy resin was characterized electrochemically in aggressive chemical electrolyte. In the present study, the hybrid material as primer was prepared from epoxy resin pigmented by zinc phosphate cured with polyamide (EPZ). The hybrid material was coated on mild steel substrate, and the corrosion behavior was studied by electrode-potential time measurements and mainly by electrochemical impedance spectroscopy (EIS) in 5% NaCl solution. The impedance parameters, namely, coating capacitance (), pore resistance (), charge transfer resistance (), double layer capacitance (), and break point frequency (), corresponding to 45° phase angle as a function of time of exposure were estimated. The observed impedance behavior were compared with the established equivalent electrical circuit represents the coated metal/electrolyte interface. Changes in the values of the circuit components given the information on the stages of degradation and physical phenomenon occurring throughout the degradation of primer coating were also been predicted. In addition, information related to the porous nature of the primer, limited passivation effect, and delamination of coating with longer exposure that resulted in the diffusion controlled corrosion of metal are also recognized. Thus, results indicate that the EPZ coating had good corrosion resistance. This could be a nonpolluting alternative to the traditional chromate like environmentally harmful coatings.

Publisher

Hindawi Limited

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3